
Tetrahedron Letters,Vo1.30,No.38,pp 5049-5052,1989 0040-4039/89 $3.00 + -00 
Printed in Great Britain Perqamon Press plc 

MULTIPLE STEREOCONTROL USING ORGANOTRANSITION METAL TEMPLATES: ALKTLATION OF ENOLATES. 
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Abstract: Generation and alkylation of enolates from (5-oxocyclohexenyl)Mo('CO)2Cp com- 
plexes 1 and 3 was accomplished regio- and stereospecifically and in high yield, allowing 
the preparation of stereospecifically substituted cyclohexene derivatives. 

Previous work1 in our laboratory has demonstrated the ability to achieve stereocon- 

trolled multiple functionalization of six- and seven-membered rings via nucleophilic addi- 

tion to dienyliron and dienemolybdenum complexes. Figure 1 depicts such a process for the 

cyclohexadiene-Mo(CO)$p system. While this generally works exceptionally well, there are a 

number of shortcomings. For example, using this methodology it is possible to functionalize 

only five carbon atoms out of a possible six or seven via organomolybdenum chemistry, and 

only six sites in the seven-membered ring using organoiron chemistry. We recently reported2 

the preparation of the oxo-substituted complex 1 and its monoalkylation to give, e.g., 2. 

We now describe modifications of this chemistry that allow stereocontrolled dialkylation as 

well as decomplexation to give potentially useful cyclohexene derivatives. 
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FIGURE 1. Stereocontrolled Double Functionalization via Nucleophile Addition to 
Cyclohexadiene - Mo(C0)2Cp Complexes (Cp = penlahapto-cyclopentsdienyl). 

In our earlier work we encountered difficulties during attempted deprotonation of com- 

plex 2 using stoichiometric amounts of LDA. We now report that treatment of 2 with an 

excess (2.2 equiv.) of LDA in THF at temperature lower than -1OO'C for 20 min., produces a 

deep red solution of the enolate, which is then allowed to react with methyl iodide (4.4 

equiv., warm to -2O"C, lh, quench at r.t. with sat. aq. NH4Cl). Using this procedure the 

dimethylated compound 3 was obtained as a yellow high-melting solid in 49% yield,3 together 

with 14% of recovered 2, which were readily separated by preparative TLC. Better yields of 

3 were obtained by treating complex 1 directly with excess LDA pi n-butyllithium (2.2 

equiv., THF, T < -100DC)4 followed by excess methyl iodide (-20°C, lh; 61% yield using LDA; 

77% yield using n-BuLi). General alkylations of 2 were accomplished using this procedure, 

and are shown in Fig. 2. 
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2 CH2=CHS02Ph 4 R’ E CH3, R2 = CH2CH2SQPh (78%) 

2 B~HG’zCH3 5 R’ = CH3, R2 = CH$O&H3 (82%) 
1 BrCH$.X&Cl-& 6 R’ = H, R2 = CH2CO&H3 (68%) 
2 CH~=c(C03CH3)S02Ph 7 R’ = CH3, R2 = CH2CH(CO&H3)S02Ph (100%) 

FIGURE 2. Stereocontrolled Double Functionalbation via Enolate Alkylation 

In these reactions, the steric bulk of the Mo(C0)2Cp group is used to control the ster- 

eochemistry of alkylation. Similar control can be exercised over nucleophile addition to 

the ketone carbonyl of, e.g., 3, which gives a single product 8 in 99-1000 yield on reduc- 

tion with LiAlH4 (8.0 equiv., THF, -30"C).3*5 One problem remains if the methodology is to 

be useful for organic synthesis, viz., conversion of the r-allyl-Mo(C0)2Cp complexes to 

cyclohexene derivatives. Treatment of 8 with bromine6 (1.1 equiv., THF, -7O'C) gave a brom- 

ocyclohexene in high yield, tentatively assigned the structure 9 based on NNR spectroscopy. 

However, this compound was unstable, presumably due to the axial disposition of the bromine 

atom,.and underwent facile rearrangement to give a mixture of 9 and 10. This problem was 

solved as follows. Complex 8 was allowed to react with bromine (2.0 equiv., THF-CH2C12, 

2:1, -7O'C, 2h) and then a solution of NaSPh (5 equiv.) in THF was added dropwise to the 

reaction mixture. After 5 min at -7O"C, the mixture was allowed to warm to room tempera- 

ture, quenched with water and extracted with ether in the usual way. Purification by flash 

chromatography afforded, in 87% yield, the sulfide 11 as a white crystalline solid, m.p. 61- 

63'C, Rf - 0.40 (CH2Cl2/EtOAc, 9:l). The stereochemistry of 11 was readily apparent from 

its NMR spectrum, which showed the all-equatorial nature of the substituents.3 
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In conclusion, selective high-yielding alkylations of enolates can be accomplished in 

the presence of a neighboring r-allyl-Mo(C0)2Cp moiety. The organometallic group can be 

used as a template to control stereochemistry & regiochemistry (~9 alkylation of 2 at the 

methyl-substituted position is observed) and the metal can be removed to give organic 

products in high yield. 
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(8): m.p. 124-126'C. IR (CliC13) vmax 3590, 3545, 1938, 1855 cm-l. NMR (CDC13) 6 5.19 

(SH, s), 4.29 (lli, t, J - 6.6), 3.39 (2H, d, J - 6.6), 2.35 (lH, t, J - 8.8). 1.54 (2H, 

dq*, J - 8.8, 7.6), 1.49 (1H. 8. exch. D20), 1.13 (6H, d, J - 7.6). H&MS calcd for 

C14H18g8Mo02 (K-CO): 316.0366. Found: 316.0371. 
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(lH, 'dt, J - 10, 1.9), 3.36 (1X, ddt, J - 10, 3.6, 2.2), 3.06 (lH, br. dd, J - 10.3, 

10.2), 2.04 (lH, br, exch. D20), 1.73-1.57 (2H, III), 1.33 (3H, d, J - 6.5). 1.07 (3H, d, 
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Controlled temperature is critical for the success of these reactions. In general, all 

deprotonations were performed at T < -1OO'C. If the temperature is raised above -98'C, 

significant amounts of phenol are formed. Presumably, this arises via double deproto- 

nation of 1 and subsequent decomposition of the resulting dianion. When 1 is treated 

with excess LDA and the temperature is raised in the absence of electrophile, phenol is 

the major product. 

We have previously established that reduction of complex 1 using LiAlH4 occurs stereo- 

specifically m to the Mo(CO)2Cp group. The stereochemical assignment of 8 is fur- 

ther supported 
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